在量化研究中,研究者通常采用数学模型和统计分析方法来描述和解释数据,探究变量之间的因果关系和相关关系。这些数学模型和统计方法可以帮助研究者控制误差、提高预测精度、检测异常值和揭示数据背后的隐藏模式。
二、做好量化类研究需要注意的几个关键点
-
明确研究问题。明确研究问题,研究的目的是为了解决研究问题,所有的研究工作(文献综述、研究设计、数据收集、数据分析、研究结果展示和讨论)都是围绕该问题展开。
-
文献综述。对相关研究进行综述,包括前人已经做了哪些研究、还存在哪些研究空白以及为什么该研究有价值。详见《文献综述类论文的作用和写作经验》
-
研究设计。根据研究问题进行合理的研究设计,包括量表设计、样本选择、数据采集、变量测量和数据分析方法选择等。
-
数据质量。保证数据的质量和准确性,包括数据采集(最关键的环节,如果采集到的数据质量不高,后面再怎么努力都无济于事)、数据处理和数据清洗等。
-
模型选择。根据研究问题和数据特征选择合适的模型进行分析。在选择模型时,需要说明选择的理由和模型的适应性。
-
结果验证。对分析结果进行合理的解释和验证,并与预期结果进行比较。在验证结果时,需要考虑到结果的可靠性和可重复性。
三、做好量化研究通常要掌握的一些数理统计方法
需要注意的是以上是一些常用的数理统计方法,但不限于这些方法。具体使用哪种方法取决于研究问题和数据特征。在量化研究中,选择合适的方法对得出正确的结论至关重要。